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Abstract 

We examined trees with onc multiple edge (of multiplicity k) and report all 
isospectral graphs found when the number of  vertices was n ~< 9. The search I~r 
isospectral multitrees was carried out systematically by constructing the character- 
istic polynomials of  all trees having one weighted edge. For all multitrees having 
n -<, 7 vertices, we tabulated the coefficients of the characteristic polynomial.  We 
restricted the analysis to trees with the maximal valency d = 4. The number of  
graphs considered exceeds 300. The smallest pair of  isospectral multitrees (i.e. trees 
with a multiple edge) has n = 6 vertices. There is a pair of  trees \~hen n = 7, three 
pairs when n = 8, and five pairs when n = 9. In all cases, when k = 1 is assumed, 
isospectral mul t i t reesreduce  to the s a m e  tree. When k = 0 isassumed,  isospectral 
trees produce either the same disconnected graph, or an isospectral forest. 
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1. In troduct ion  

While isospectral (er cospectral) graphs, i.e. nonisomorphic graphs with the 
same set of eigenvalues, havc received considerable attention, ehe cannot escape 
noticing a lack a results on isospectral multigraphs. Multigraphs are graphs in which 
at least one pair of vertices is connected with two er more lines. A simple multi- 
graph is a graph associated with the well-known problem of Königsberg bridges [1] : 

Bet\»re 1970, isospectral graphs were considered rare, the exception rather than 
the rule. Later, it became apparent that they are rather COmlnOn. In the case of trees, 
reported by Schwenk [3], as the number of vertices increases, the ratio of the number 
of isospectral trees to the number of all trees approaches 1. Hence. the somewhat 
provocative title of  the article by Schwenk: Ahnost  all trees are «()st)ectrul. Despite 
their abtmdance and rauch past interest~ there are a number of unresolved questions 
concerning isospectral graphs. For example, are isospectral trees haviHg a single branch- 
ing vertex possible? So far. not ehe single oase has been reported. Are isospectral 
tr««s having no vertices of  degree 2 (the so-called "proper" graphs) possible? lso- 
spectral graphs having no vertices of degree 2 are known [3]. No oase of isospectral 
trees in which at least ehe parmer has no verticesofdegree U = 2 hasyet been reported. 

It is surprising to find no mention of isospectral multiirees in the literature. 
A single illustration of isospectral multitrees [4] was coilstructed from isospectral 
trees by connecting "isospectral" points by a multiple link, as shown in fig. 1. Such 

" \  . . . .  / 

I:ig. 1. Trivially constrticted isc}spcctral multitrees{}btained 
by connecting isospectral poinls of is<)spccIral ticcs. 

constructions de not reveal structural novelties and represent a trivial extension of 
trees to multitrees. We report hefe on a systematic search for isospectral multitrees. 
We also briefly consider constructions of families of isospectral multitrees. Graphs 
such as these in figs. 1 and 2, which can be obtained using known properties of iso- 
spectral graphs without inultiple bonds, are excluded from consideration. The iso- 
spectral graphs of fig. 2 can be constmcted by attaching a fragment having a multiple 
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4 ~  
t:ig. 2. Trivially constructed isospectral multitrees obtained 
by attaching a fragment having multibond to isospectral 
points of isospectral trecs. 

bond to the patent endospectral graph. Such constructions, which hold for any 
fragment (hence also for a fragment with a multiple link), can therefore be viewed 
as trivial, and the corresponding isospectral graphs as uninteresting. 

2. Characteristic polynomials via ulthnate pruning 

Our systematic search for isospectral multitrees is based on the construction 
of the characteristic polynomials of all trees of a certam size, having a pair of multi- 
connected vertices. As will be seen, the assumed multiplicity k for the multiple edge, 
when the k = 0 and k = 1 cases are excluded, does not influence the property of 
isospectrality. Therefore, without loss of generality, we may assume for the trees 
considered that k = 2, i.e. they have one double bond. 

The construction of the characteristic polynomial for graphs of arbitrary size 
was considered to be extremely tedious [5]. The difficulty arises from the exponential 
growth of the number of tenns arising in the construction of the polynomial [6]. This 
is evident from the pictorial approach to the characteristic polynolnial of Spialter [7] 
or the combinatorial approach of Sachs [8], who expressed individual coefficients 
of the characteristic polynomial by a collection of qualified subgraphs. Their work 
was preceded by an early contribution of Coulson [9], who derived coefficients of 
a secular determinant lA - xI[  bycount ingselected subgraphscontributing to the 
expansion. We may also mention the pioneering work of Denes König, the author of 
the first book on Graph Theory [10], who interpreted a determinant of the adjacency 
matrix of the graph as a linear combination of selected subgraphs. A number of known 
techniques in numerical analysis for deriving the characteristic polynomial, such as 
the method of Krylov [11], Le Verrier's method [12], and others [13], have only 
recently attracted attention for graph-theoretical applications [14]. In addition, some 
novel approaches for the construction of the characteristic polynomia! of graphs have 
been developed [15], although their practical value remains to be seen. Computer 
programs for deriving the coefficients of  the characteristic polynomial also became 
available [16,17]. 

Of particular interest for the present study of isospectral multitrees are the 
following developments: Firstty, Balasubramanian [18] outlined an elegant scheine 
for a construction of the characteristic polynomial of trees. In this approach, one 
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considers a determinant for a reduced tree, obtained by pruning terminal vertices. 
lnstead of an initial /z × n detenninant, we thus obtain a smaller n' × n' determinant, 
where n' is the number of vertices that remain after eliminating the terminal vertices. 
"Irees can be pmned repeatedly, until ultimately 2 x 2 determinants are obtained. 
Reduced determinm~ts are constructed so that their expansion gives the correct 
characteristic polynomial of  the initial graph. Secondly, the use of Chebyshev poly- 
nomials as the basis for the construction of the characteristic polynomials simplifies 
expressions t\~r the polynomials and makes comparisons simpler [20]. Chebyshev 
polynomials form a more "natural" basis for expressing characteristic polynomials 
of graphs, in particular for trees, because they themselves are the characteristic poly- 
nomials of linear graphs on n vertices. The multiplication table for Chebyshev poly- 
nomials has a simple stmcture [20,21] : 

L(m) x L ( / z ) = L ( m  + n )  + L(m + n -  2) + L(m + n -  4) + . . .  + L ( m - n ) ,  

which allows expressing products of  the polynomials as a linear combination of L (kl) 
terms of a same parity (i.e. L having all even or all odd subscripts). Instead of the 
gradual pruning of terminal vertices in a tree, one can alternatively, in a single step, 
prune arbitrary end groups. In this way, orte can immediately consider a 2 x 2 deter- 
minant, constructed by selecting a bond and its ends as terminals [21]. Let a and b 
represent the end vertices of an "ultimate" edge, and let A and B represent fragments 
attached to vertices a and b, respectively, and also let A and B represent the character- 
istic polynomials of the mentioned fragments. Let A - a represent the subgraph of A, 
obtained by erasure of  the vertex a (which implies also erasure of i ts  incident edges). 
Analogously, let B - b represent the subgraph of B, obtained by erasure of the 
vertex b. Again, the same symbols A - a and B - b will represent also the character- 
istic polynomials of  the corresponding subgraphs. Then the 2 × 2 detenninant is: 

A A - a  

B - b  B 

3. An i l lustration 

Consider a pair of  isospectral graphs from fig. 3, in which the fragments A, B 
are linear chains. The characteristic polynomials of the two graphs can, therefore, be 

Fig. 3. A pair of isospectral trees. 
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expressed directly by L(k), where k indicates the number of vertices in the corre- 
sponding chains. We selected as "ultimate" the bond between the unique branching 
vertices. Therefore, for the two isospectral trees we obtain: 

L(5) L(1) L(3) 

L(1)L(3) L(S} 

L(3) L{1)L(1} 

L (2) L (4) L (7) 

One can immediately write for the characteristic polynomials: 

L(5) I.(5) - L(3) L(3) L(1) L(1) and L(7) I-(3) - L(4) L(2) L(1), 

respectively. Use of the multiplication rule for L (k)  allows one to simplify the above 
expressions. For example,  the diagonal elements o f  the two determinants lead to the 

following results: 

L(5) L(5) = L(10) + L(8) + L(6) + L(4) + L(2) + 1 

L(31L(7)  = L(10) + L(8) + L(6) + L(4). 

The products m the oft-diagonal elements similarly give: 

L ( 1 ) L ( 3 } = L ( 4 ) + L ( 2 )  

L(2) L { 4 ) = L ( 6 ) + L ( 4 } + L ( 2 )  

L(~)L(1 : / . (2 )+1 ,  

where L(0) = 1 These have to be multiplied in the expansion of the determinant, 
giving: 

[L(4) + L(2)] [L(4) + L(2)] : L(8) + 2 L(6) + 2 L(4) + 3 L(2) + 3 

[L(6) + L(4) + L(2)] [L(2) + 1] = L(8) + 3 L(6) + 4L(4)  + 3 L(2) + 1. 

By combining the above results accordingly, we finally obtain for the characteristic 
polynomial of  both graphs the same polynomial: 

L(IO) - 2 L(6}  - 3 L(3}  - 3 L ( 2 )  - 1. 

4. Charac te r i s t i c  l}olynolnials  fo r  m u l t i t r e e s  w i th  n = 6 and  n = 7 

To derive the characteristic polynomials of multitrees with a single multibond 
of  weight k 1/2 the outlined approach will now be used. Use of k 1/2, rather than k, 



254 M. RandiO and B. Baker, lsospectral multitrees 

makes the expressions for the coefficients of  the characteristic polynomials simpler. 
As will be seen, k need not be specified; the coefficients of the characteristic poly- 
nomials are directly expressed in terms of  k. In applications, the coefficients can be 
found by inserting the proper value of  k 1/2. For example, k = 4 describes the presence 
of doubly connected vertices, k = 9 describes the case of triply connected vertices. 

We start by selecting as the "ultimate" edge for the construction of the 2 x 2 
determinant, from which the characteristic polynomial will be computed with an edge 
of  multiplicity k. Consider the simplest case, a chain having three vertices, two of 
wl~ch are linked by a multibond: 

0 " 0  0 

,/7 

The 2 x 2 detenninant becomes: 

L(2) x/k- L (I) 

B 

~/k L(1) 

That this is the correct fonn for the determinant caä~ be verified by a direct expansion 
of  the 3 x 3 determinant for the graph. From the above determinant, we immediately 
obtain for the characteristic polynomial in a Chebyshev expansion 

Ch(L(k), G) = L(2) L(1) - k L(1) 

= L(3)  + L(1)  - k L(1) 

= L ( 3 )  + (1 - k) L ( 1 ) .  

The coefficients of  the L(3) and L ( I )  functions are 1 and (1 - k), respectively. If 
we set k = 1, the above reduces to L(3),  the correct form of the characteristic poly- 
nomial of a linear chain having three vertices. I11 table 1, we list the coefficients of 
the characteristic polynomials, in a Chebyshev expansion, for all multitrees having 
17 = 6, 7 vertices. The coefficients of  the characteristic polynomial for larger multitrees 
will be reported elsewhere [22]. 

Some regularities of  the coefficients shown in table 1 are apparent. The leading 
coefficient of the characteristic polynomials is 1 which, for brevity, has not been 
includëd in the tabulation. The coefficient of the next L(k) term appears always as 
(1 - k). Observe also that for many multitrees some coefficients are independent of k. 
The constant tema (i.e. the last term when n is even) gives the value of the deter- 
minant of  the adjacency matrix. As we see from table 1, there are trees (shown in 
fig. 4) whose determinant does not depend on k. In the case of linear chains, all non- 
zero coefficients are always (1 - k), while the number of non-zero coefficients 
depends, in a straightforward way, on the location of  the multibond. 
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T a b l e  1 

T h e  c o e f f i c i e n t s  o f  t h e  c h a r a c t e r i s t i c  p o l y n o m i a l s  in  a C h e b y s h e v  e x p a n s i o n  fo r  a l l  

m u l t i t r e e s  h a v i n g  n = 6 a n d  n -- 7 v e r t i c e s  a n d  m a x i m a l  v a l e n c y  o f  d = 4 

G r a p h  L« L :  L o 

/ " « "  ........... / I k 

/~-~--J 1 k 1 - k 1 -- k 

B.~. ........... 1 ......... k - k  

/ L / - \  1 k 1 - 2 k  1 - k 

z ] - - . / " - .  1 ........ k - k 

ù'J'-,,-/'~ i - k .... 1 - I + k 

/ " - : / ' -  1 - k .-i - 1  

""~'~"- l - k I - 2 k  .... k 

ù'"~'['" i k -k ....... k 

BV" i-. ......... i-. -I 

ù "~"~/" I ....... k I ..... 3 k  i 2 k  

.~<-.«" 1 k 1 ....... 2 k  - 1 - k  

B ~ . .  1 - k 3 k  - 2 Æ  

~ ~ ~ ' i ~  1 -- k - 3  - 3 + k  

G r a p h  L 5 L~ L, 

1 - k 

,~ . .~~.  / 1 ......... k ...... k 

ù k , . . ~ . j  1 - k 1 - 2 k  1 - k 

ù J - ~ - . / - . /  1 - k - k  1 - k 

B 1 ......... k .......... k - l + k  

~'J'-J~J 1 - k - 1  - 1  + k  



2 5 6  
T a b l e  1 ( c o n t i n u e d )  

G r a p h  L s 1, 3 L~ 

f - ,~z--v . ,  1 - k ......... 1 1 

.... ~ ~  ......... i 1 k 1 2 k  - k  

~ ~ ~ " J  1 - k 1 2 k  1 2 k  

...... » ~ z  1 k k .... 1 

....... ~~'- " /  1 k 1 ..... 2 k  - k 

1 - ~ k  1 2 

1 - k 1 2 k  2 k  

jJ-.~, J[-,., 

1 k 1 ~ k 2 

1 k 1 3 k  1 3 k  

1 k . 2 k  1 k 

1 - k - 2  .... 3 + k  

1 k l k 1 k 

1 k l k 1 + k  

1 k 2 k  1 k 

B ................ 1 .... k 1 2 k 1 k 

, <  
............. 1 k - 3 k  1 3 k  

~;>< [ " -  1 k ..... 2 k 3 + k 

~ ; ' Q J ' -  1 k 3 5 + 3 k 

1 k 3 5 + k  

1 k 3 k  1 3 k  

1 k 1 2 k  2 2 k  

1 k .... 2 2 k  3 -  k 

1 - k -41,- 1 5 k  

1 -  k i - -  3 k  - I -  3k 
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Fig. 4. Multitrees having the constant term of the character- 
istic polynomial independent of k (the multibond weight). 

5. l sospec t r a l  m u l t i g r a p h s  

Our interest is in multitrees for which all the coefficients of the characteristic 
polynomial are equal. The first case, the smallest isospectral multitree, occurs when 
n = 6. In table 2, we show the corresponding eigenvalues and the characteristic poly- 
nomials, assuming as multibond a double bond. Numerical results were obtained using 
the MATLAB routine available for VAX computers [17]. Among sixteen multitrees 
on six vertices, this is the only pair of isospectra! graphs. When n = 7, we again found 
a pair of isospectral multitrees, one pair among thirty-two possible multitrees. As the 
size of the graphs increases, so does the number of isospectral multitrees. When n = 8, 
there are eighty-two multitrees (with maximal valency of d = 4 or d = 3 + k 112) and 
we found three isospectral pairs among them. Finally, when n = 9, we have examined 
all 109 possible inultitrees and found five isospectral pairs. In all, we found ten pairs 
of  isospectral multitrees, i.e. twenty trees among some 330 trees, which is fewer than 
the number of isospectral trees for the corresponding sample size of simple trees. 

In fig. 5, we illustrate all the isospectral multitrees found. We considered only 
trees with the maximal valency of 4, because of a chemical bias, where graphs having 



2 5 8  Tabte 2 

The coefficients of  the characteris t ic  polynomial  and 
the associated eigenvalues for the smallest pair of  iso- 
spectral mul t i t rees  (las o u t p u t  of MATLAB rout ine)  

0. 1. 0. 0. 0. 0. 
1, 0, 1. 0. 0. 1. 
0. 1. 0. 2. 0, 0. 
0. 0. 2, 0. 1. 0. 
0. 0. 0. 1. 0. 0. 
0, 1, 0. 0, 0. 0. 

poly (c) 

ANS = 

1.0000 
0 ,0000 
8 .0000 
0 .0000 

11.0000 
0 .0000  
0 .0000  

< >  
eig (c) o 

ANS = 

2.4972 
1,3281 
0 .0000 
0 ,0000  
1.3281 
2 .49?2  

0, 2. 0, 0. 0. 0. 
2. 0. 1. 0. 0. 1. 
0. 1. 0. 1. 0. 0. 
O. 0. 1. O, l .  O. 
0. 0, 0. 1. 0. 0, 
0, 1. 0. 0, 0, 0, 

poly la) 

ANS = 

1,0000 
0.0000 
8 .0000 
0 ,0000 

11.0000 
0 .0000  
0 .0000  

eig ta) 

ANS = 

- 2 .4972 
..... 1.3281 

0.000Õ 
0 .0000 
1.3281 
2.4972 

O 0 0 
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vertices of higher valency have fewer applications. Observe that in all the cases of 
fig. 6, when k = 1 is assumed, isospectral multitrees reduce to the same graph. This 
need not necessarily be the case because multitrees could also, when k = 1, reduce to 
nonisomorphic isospectral trees. However, we have not yet found any such case. 
Because there was no restriction on the value of k when deriving the polynomials, we 
can consider the k = 0 cases. These cases correspond, pictorially speaking, to an 
erasure of a nmltibond and, unless a multibond is terminal, will produce disconnected 
graphs. An erasure of multibonds in isospectral pairs may produce different or identical, 
connected or disconnected, trees. In the former case, we arrive as isospectral forests 
(fig. 6). While the cases are probably not new, clearly it was not previously perceived 
that isospectral forests can be related to isospectral multitrees, ttowever, not every 
pair of isospectral nmltitrees found, when k =0~ produces a novel isospectral forest. 
When n = 8, there are two pairs of isospectral multitrees which reduce to the same 
isospectral forest, while when n = 9, there is an additional pair of isospectral multi- 
trees which reduces to the same tree. 

Because powers of Chebyshev polynomials of a low index appear frequently in 
computations of the characteristic polynomials, a table of powers of L(k)  was con- 
structed to expedite the search. In the case of powers of L(1), the coefficients of the 
corresponding L(k) can be conveniently displayed in a triangular form (table 3). The 

Table 3 

The pat tern  made by the coeff ic ients  of  powers o t  L ( I )  when expanded in tcrms of  Chebyshev  
p o l y n o m i a l s L I k )  

I 

1 

9 

n Expansion Coefficients  L 1 

1 L 1 L 1 

1 1 LI 2 L 2 + 1 

1 2 L 3 L 3 + 2 L  1 

1 3 2 L 4 L 4 + 3 L 2 + 2  

1 4 5 L~ L 5 + 4 L  3 + 5 L  1 

1 5 9 5 L 6 L 6 + 5 L 4 + 9 L 2 + 5  

6 14 14 L 7 L 7 + ö L  s + 14L 3 + 14 

7 20 28 14 LI 8 L 8 + 7 L  6 +201,  4 + 2 8 L  2 +14 

27 48 42 L 9 L9 +SLT + 27L5 +48L3 +42L 1 

35 75 90 42 L{o L I o + 9 L 8 + 3 5 L 6 + 7 5 L 4 + 9 0 L 2 + 4 2  

pattern made by the coefficients is reminiscent of the Pascal triangle. The coefficients 
can be obtained, like in the Pascal triangle, by adding numbers in a preceding row. The 
last column is constructed by interpreting the "missing" entries of the rows above as 
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zero, giving for the last two columns the same entries: 1,2, 5, 14, 4 2 , 1 3 2 , . . . .  These 
are the well-known Catalan numbers: 

(2n)! 
C ( n )  - 

n ! ( n  + 1)! 

emerging in numerous mathematical and chemical applications [23]. For example, the 
number of  canonical "excited" valence strucmres for a conjugated polycyclic hydro- 
carbon having n + 1 double bonds is given by C(n) [24]. The triangle of table 3 
appeared also in a biological context. 

6. C o n s t r u c t i o n  o f  i sospec t r a l  m u l t i t r e e s  

In fig. 7, we collected isospectral multitrees of different sizes showing apparent 
structural similarities. The trees having n = 6 and n = 8 vertices, shown at the top of 

Fig. 7. Isospectral multitrees of different 
sizes showing apparent structural similarity. 

fig. 7, have the same coefficients in their characteristic polynomials: 1, (1 - k), and 
- k  although, due to their sizes, the coefficients correspond to different powers of x. 
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The larger graphs can be viewed as obtained from the smaller ones by increasing the 
length of  the "backbone" chain. The lengths of  the "chains" are increased by adding 
or inserting edges, at one side or both sides of the unique multiedge. Are such "opera- 
tions" legitimate? Is this a valid "augmentation" process which will always yield 
larger isospectral multitrees? We have verified the "process" for the n = 10 case 
and found that the corresponding multitrees possess the same characteristic poly- 
nomial: L(10) + (1 - k) L(8) - kL(6) .  Hence, not only are multitrees derived in 
this way isospectral, but their characteristic polynomial has the same simple structure 
atready observed. One many conjecture the sinne to be true for the family of  graphs 
of  which the above are the initial members. 

Similarly, the isospectral trees of the lower part of fig. 7 suggest another 
fmnily of  isospectral multitrees. The higher members of  this family are constructed 
by adding, at each end of the "long" chain, an edge. Again, upon verification, we find 
that our guess was correct; the n ; 10 multitrees of fig. 9 have the same characteristic 
polynomial: L(10) + (1 - k) L(8) - kL(6 )  - kL(4)  - kL(2) ,  i.e. are isospectral. 

7. Multigraphs with several multiple edges 

The isospectral multitrees found (fig. 5) can fonnally be viewed as derived 
from a single graph by interchanging a pair of weights k and 1 between the unique 
edges defining the isospectral pair. For example, the smallest isospectral multitrees 
c~m be viewed as obtained from a patent simple tree by switching the weight factors k 
and 1 from the tenninal bond in one tree to the central bonds in another (fig. 8). If 

Fig. 8. Isospectral multitrees viewed as 
obtaincd from a patent tree by "switching" 
the wcights for a pair of edges. 

such a viewpoint is correct, it ought to hold also if we interchange weights p and q 
instead of  k and 1. Hence, trees shown in tig. 8 with p 4= q 4= 1 may represent a 
general case ofisospectral multitrees. In the case p = 2 and q = 3, we have: 
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I 

I 

)-..)-..~ 

Fig. 9. Parent trees for obtaining isospectral 
multitrees by exchanging the weights p and 
q between the two tmique edges. 

By constructing the corresponding characteristic polynomials, we verified that the two 
multitrees are indeed isospectral. We examined ~1 the multitrees of table 2 and tested 
whether they remain isospectral when assuming special weights p = 2 and q = 3 
instead of k and 1. We always found that isospectrality was preserved. Hence, iso- 
spectral multitrees can be represented by a single graph having two unique edges 
associated with distinct weight, as illustrated in fig. 9. When either p or q is assumed 
to be zero, we obtain isospectral forests involving multitrees as illustrated in fig. 10 
for assumed unspecified multiple bond weights. 
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B ~  ~ & J  > . 

Fig. 1 O. lsospectral forests involving mullitrees. 
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